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Experimental investigation of Rayleigh–Taylor
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The self-similar evolution to turbulence of a multi-mode Rayleigh–Taylor mix at small
density differences (At ∼ 7.5 × 10−4), is investigated through particle image velocimetry
(PIV), and high-resolution thermocouple measurements. The density difference has
been achieved through a temperature difference in the fluid. Cold fluid enters above
the hot in a closed channel to form an unstable interface. This buoyancy-driven mixing
experiment allows for long data collection times, short transients, and is statistically
steady. First-, second-, and third-order statistics with spectra of velocity and tempera-
ture fields are presented. Analysis of the measurements has shed light on the structure
of mixing as it develops to a self-similar regime in this flow. The onset of self-
similarity is marked by the development of a self-preserving form of the temperature
spectra, and the collapse of velocity profiles expressed in self-similar units. Vertical
velocity fluctuations dominate horizontal velocity fluctuations in this experiment,
with a ratio approaching 2:1 in the self-similar regime. This anisotropy extends to
the Taylor microscales that undergo differential straining in the direction of gravity.
Up to two decades of velocity spectra development, and four decades of temperature
spectra, have been captured from the experiment. The velocity spectra consist of an
inertial range comprised of anisotropic vertical and horizontal velocity fluctuations,
and a more isotropic dissipative range. Buoyancy forcing occurs across the spectrum
of velocity and temperature scales, but was not found to affect the structure of the
spectra, resulting in a −5/3 slope, similar to other canonical turbulent flows. A scaling
argument is presented to explain this observation. The net kinetic energy dissipation,
as the flow evolves from an initial state to a final self-similar state was measured to
be 49% of the accompanying loss in potential energy, and is in close agreement with
values obtained from three-dimensional numerical simulations.

1. Introduction
Rayleigh–Taylor (R-T) instability is induced when a density gradient is accelerated,

in the presence of infinitesimal perturbations, by a pressure gradient in the opposite
direction such that ∇p · ∇ρ < 0 (Chandrasekhar 1961). If the initial density interface
comprises a spectrum of velocity and/or density disturbances, then the pressure
gradient drives the growth of the perturbation to form a mix region whose width grows
in time. Development of the mix was divided by Youngs (1984) into three successive
regimes: (i) initially an exponential growth of infinitesimal perturbations that
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Figure 1. Stages of the evolution of R-T instability.

correspond to linear stability analysis; (ii) at amplitudes of about half the wavelength,
the instability saturates and the perturbation speed grows at a constant rate; and
(iii) thereafter, longer wavelengths overtake owing to their continuing growth.
Emmons, Chang & Watson (1960) coined the term ‘bubble competition’ to
describe this last regime. Eventually, through mode interaction and successive wave-
length saturation, a self-similar R-T mix layer is formed (figure 1). To illustrate the
mixing process, figure 2 shows planar laser induced fluorescence (PLIF) photographs
taken from the experiment described herein. The fluid is water, with the top layer
at a temperature of 17 ◦C and the bottom layer at 22 ◦C, and the flow direction is
from left to right. The temperature difference provides a corresponding small density
difference due to thermal expansion. Inspection of the photographs reveals that at
early times (figure 2a) as the two streams leave the edge of a splitter plate, two-
dimensional single-wavelength perturbations can be seen growing downstream. The
leaning of early-time structures is due to the development of boundary layers on the
splitter plate. From the mean velocity profiles immediately after the splitter plate,
the associated velocity deficit was estimated to be ∼ 0.4 cm s−1 (∼ 10% of the mean
convective velocity). However, this velocity defect is neutralized rapidly (by x ∼ 2 cm)
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Figure 2. Planar laser induced fluorescence (PLIF) images at (a) early and (b) late times
of the evolution of the R-T instability.

due to the buoyancy-driven vertical transport of momentum and due to diffusion
(Ramaprabhu 2003). This is in contrast with late-time complex vortical structures
(figure 2b), which show streaks of darker fluid trapped fully inside the lighter fluid.
This can only occur if there is significant three-dimensionality that results in out-
of-plane fluid being entrained into the plane of visualization. At these late times,
single-wavelength perturbations have interacted and developed into larger scales in
the process described by Youngs (1984). The nonlinearity at late time is evident from
the presence of a wide range of scales not seen in figure 2(a). The bubbles seen at late
time are travelling downward with a terminal velocity defined below. The mushroom-
shaped structures in figure 2(b) are typical of R-T mixing layers. Figure 2(b) also shows
many secondary roll-up processes, especially on the large inverted mushroom, slightly
to the left of the vertical centreline. Often these secondary roll-ups are driven by
shear resulting in a localized Kelvin–Helmholtz instability. We return to this mixing
process for a detailed investigation later in the paper.

Once at self-similarity, dimensional analysis (Youngs 1984) shows the half-mix-
width h, must grow quadratically with time according to:

h = αAtgt2, (1)

where At , the Atwood number is the governing parameter of the flow defined by At =
(ρ1 − ρ2)/(ρ1 + ρ2), ρ1 and ρ2 are the cold- and hot-water densities employed in the
present work, g is the acceleration due to gravity, and α is a constant. For large
At → 1 (as ρ1/ρ2 → ∞), the mix is no longer symmetric about the density interface,
then h corresponds to the bubble penetration distance from the position of the initial
unstable interface.

Equation (1) for h was arrived at by Youngs (1984) through a nonlinear extension
of the linear stability theory (Chandrasekhar 1961). In the linear regime, assuming
the viscous forces are negligible, the growth rate of the most dominant mode is given
by (Youngs 1984)

nm =

{
πg

lm

ρ1 − ρ2

ρ1 + ρ2

}1/2

, (2)

where lm is the dominant wavelength. In the nonlinear regime, the width of the mix
may be taken as being proportional to the dominant wavelength (Lewis 1950), and
h ∼ lm. If the dominant mode takes N exponential turnover times to evolve, then
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nmt = N . Thus, solving (2) for lm, the mix width is given by

h ∝ lm =
2π

N2

ρ1 − ρ2

ρ1 + ρ2

gt2. (3)

This argument is similar to the ‘e10’ approach for describing the transition of Tolmien–
Schlichting waves in a boundary layer (Jaffe, Okamura & Smith 1970). Indeed, coin-
cidentally, Youngs (1984) suggests taking N = 10 (i.e. 10 exponential turnover times).
This gives an estimate for α as 2π/N2 ∼ 0.06. Another approach is to employ the ter-
minal velocity for a dominant wavelength (bubble), given by v∞ = c∞

√
(ρ1 − ρ2/ρ1)gRb

where Rb is the bubble radius (Daly 1967; Ratafia 1973). Daly also suggests the use of
Db ∼ λb = lmρ1/(ρ1 + ρ2) to characterize the dependence of spike and bubble diameters
on the wavelength and density ratio ρ1/ρ2, i.e. at high density ratios (At → 1), the spikes
are very narrow and Db = lm. At low density ratios, spikes and bubbles have nearly
equal diameters given by Db = lm/2. Substituting for Rb = Db/2 in the above expression
for bubble terminal velocity, we obtain v∞ = c∞

√
Atglm/2. For low Atwood numbers

(ρ1/ρ2 = 1.1), Daly (1967) found c∞ to be ∼ 0.7. Then, in the nonlinear regime, we can
take v∞ = dh/dt =dlm/dt giving upon integration over time, lm =αAtgt2 and α ∼ 0.05,
using h ∼ lm and h = 0 at t = 0.

The implication of (1) is that at self-similarity all memory of the initial conditions
has been lost, and the only relevant length scale is gt2. While this suggests that α is
a universal constant, experiments and numerical simulations have produced differing
values. The value of α has been measured at ∼ 0.03 from numerical simulations
(Young et al. 2001; Youngs 1984), while experimental values are usually higher.
Dalziel (1993), Snider & Andrews (1994) and Read (1984) report a value of 0.07 from
their experiments, while the linear electric motor (LEM) experiments of Dimonte
& Schneider (2000) give a value of 0.05. Glimm et al. (2001) use a front-tracking
algorithm in their three-dimensional simulations that yield a value of 0.07 comparable
with experiments. Linden, Redondo & Youngs (1994) report a value of 0.044 ± 0.005,
after introducing a virtual origin to account for any transients that may be present
owing to the initial withdrawal of the dividing plate in their experiment. The difference
in the values of α between experiments and numerical simulations is believed to be
due to the presence of long wavelengths in experiments, while most numerical simu-
lations are initialized with short-wavelength content that evolve purely through mode-
coupling (Cook & Dimotakis 2001; Young et al. 2001; Youngs 2003). When such
long wavelengths are present, α is no longer universal, but depends (logarithmically)
on the initial amplitudes. Conversely, in the mode-coupling limit present in most
numerical simulations, α takes up a lower bound universal value (Dimonte 2004).
Work is in progress elsewhere to resolve the differences between numerical simulations
and experiments (Dimonte et al. 2004).

The buoyancy-driven instabilities described above appear in environmental flows
such as effluent discharge into rivers and estuaries, and in industrial applications such
as heat exchangers and sprays in internal combustors (Beale & Reitz 1999). Rayleigh–
Taylor mixing also occurs during the implosion phase of the inertial confinement
fusion process (Lindl 1998), which involves the high-power laser bombardment of a
target fuel capsule. Target surface imperfections and non-uniformities in the beam
provide initial perturbations for the R-T pressure-driven hydrodynamic instability.
Here, turbulence-induced mixing sets an upper limit on the peak implosion velocity
resulting in the reduction of yield, and it is of interest to dampen the growth of the
instability in such cases. Perhaps the largest observable R-T mix is the finger-like
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ejecta of stellar material believed to be present in the remnants of a young supernova
(Gull 1975).

The earliest single-mode R-T experiments were carried out by Lewis (1950), using
fluids of different densities in a vertical tube accelerated by air pressure. Emmons et al.
(1960) generated a pressure gradient by accelerating a tank containing methanol and
air along guide rails. Read (1984) was the first to perform experiments that investigated
multimode R-T driven mixing. He used solid-fuel rockets to generate accelerations
up to 76g, although the experiment allowed only a few milliseconds of data collection
time. Early work on buoyancy-driven flows include the experiments of Jevons (1857)
who studied the formation of cirrus cloud formation through a thermal inversion of
a stable interface. Dimonte & Schneider (1996) used a set-up similar to Read (1984),
but with the acceleration provided by linear electric motors. Both experiments were
capable of handling large density differences. Other methods of obtaining an unstably
stratified interface include quickly overturning a narrow box filled with the light fluid
on top of the heavy (Andrews 1986; Andrews & Spalding 1990), and withdrawing
a plate that initially separates the two fluids (Linden et al. 1994; Dalziel, Linden &
Youngs 1999). All these experiments have short data collection times, and require a
large number of repeat runs which has limited the extent of statistical data collection.

Recent advances in modelling of buoyancy-driven turbulence include the spectral
transport model (Besnard et al. 1990, 1992; Steinkamp 1995; Steinkamp, Clark &
Harlow 1995; Wilson, Andrews & Harlow 1999), the two-fluid models (Andrews 1986;
Youngs 1989), and the Reynolds stress/Bousinesq models (Snider & Andrews 1996).
All of these advanced models for R-T mixing require detailed measures of turbulent
quantities such as ρ ′2, u′2, v′2, u′v′, and u′v′v′ to validate closure models. Although
these quantities may be computed from direct numerical simulations (DNS), such
calculations are limited to relatively low Reynolds numbers; thus, there is a continuing
need to obtain these quantities experimentally. A recent high-resolution simulation by
Cook & Dimotakis (2001) was performed at Taylor Reynolds numbers of up to 100,
the threshold for mixing transition (Dimotakis 2000). Such a simulation constitutes
one realization of the spatially evolving mixing layer in the current experiment and
is typical for the current state-of-the-art of DNS of R-T mixing. Thus, the R-T mix
represents a leading grand challenge problem in the DNS of turbulent flows, placing
stringent requirements on resolution in time and space, and desired ensemble averages.
We also note the prevalence of large-eddy simulation (LES) techniques in the study of
R-T flows, especially at high Reynolds numbers. The monotone integrated large-eddy
simulation technique (MILES) has been shown to be particularly attractive in the
study of flows with discontinuities such as R-T (Youngs 2003).

To predict the turbulent mixing that occurs within the self-similar region, it is
important to understand the mechanisms and structure of the turbulent flow field.
In this paper, we do this through studying measurements of turbulent velocity and
density fields. Andrews and collaborators (Snider & Andrews 1994; Wilson et al. 1999;
Wilson & Andrews 2002) have developed a statistically steady low-Atwood-number
Rayleigh–Taylor mixing experiment based on the concurrent flow off the end of a
splitter plate of cold (ρc) water over hot (ρh). The experiment permits extended data
collection times (10 min or longer), with collection of statistically convergent data, and
does not have long time transients. In the present work, we employed particle image
velocimetry (PIV) to investigate R-T mixing. We note that Prestridge et al. (2000) used
PIV and flow-visualization techniques to observe the instantaneous two-dimensional
velocity and density fields in their Richtmeyer–Meshkov experiments. Dalziel (1993)
used particle tracking velocimetry to investigate low-Atwood-number mixing in his
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Figure 3. Schematic of experimental set-up.

tank and barrier experiments. In this study, turbulence quantities and their spectra
were determined from detailed two-dimensional slices of three-dimensional turbulent
velocity fields obtained using PIV (for a review of PIV techniques, see Adrian 1991),
and from high-resolution single-point thermocouple measurements. Independently,
Lawrence, Browand & Redekopp (1991) used a related experimental set-up in their
study of compound mixing due to shear and a stable density stratification. Another
version of the experiment can be seen at the end of the film by Stewart (1968).

2. Experiment
The experimental set-up is shown in figure 3. The channel consisted of upper and

lower entry plenums separated by a splitter plate. The cold-water channel was fed
from a 500 gallon tank, and a second lagged 500 gallon tank of warm water fed into
the lower channel. The cold and warm water streams entered the channel at a mean
velocity of ∼ 4.4 cm s−1. The density difference was achieved through a temperature
difference of 5 ◦C–10 ◦C in the water. Temperature data were converted to density
through the following equation of state (Kukulka 1981):

ρ = (999.8396 + 18.2249Θ − 0.007922Θ2 − 55.448 × 10−6Θ3 + 149.756 × 10−9Θ4

− 393.295 × 10−12Θ5)/(1 + 18.159 × 10−3Θ), (4)

where Θ is in centigrade degrees, and ρ is in kg m−3. The above expression is nearly
linear at temperatures in the range of 15 ◦C–25 ◦C for the present experiment. Both
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tanks contained sump pumps to ensure a uniform temperature was maintained in the
tanks throughout the experiment. Thus, cold (heavier) water entered through the top
plenum, while warm (lighter) water entered through the lower plenum, and the two
streams formed an unstable Rayleigh–Taylor mix as they left the edge of the splitter
plate. The resulting flow was statistically steady, allowing for long data collection
times, albeit at small Atwood numbers At < 10−3. No shear between the two fluid
streams was employed in the present work. Nigrosine dye was injected at the splitter
plate, and the flow velocities were adjusted until the dye was convected downstream
without undergoing any distortion due to shear. From mean velocity profiles across
the mix at late-time, the amount of shear was determined to be ∼ 1% of the mean
convective velocity. The flow channel was 241 cm long (including the inlet and exit
plenums), 31 cm deep, and 15 cm wide. At this width, the front and back walls of the
channel did not have any effect on the development of the mix in the central region
(Snider & Andrews 1994). The test section was 100 cm long. The splitter plate was
0.32 cm thick, with a 2.5◦ knife-edge. Calibrated rotameters were used to regulate the
mean flow rate. Screens and flow straighteners in each of the plenums minimized free-
stream turbulence (Snider & Andrews 1994) and suppressed the growth of boundary
layers on the walls. As figure 2 shows, and was discussed in the last section, any
velocity defect from the boundary layers is smoothed out rapidly (by x ∼ 2 cm) owing
to the buoyancy-driven vertical transport of momentum and to diffusion. A fine mesh
(35 mesh/in.) at the end of the splitter plate absorbed some of the momentum deficit
introduced by the knife-edge.

2.1. PIV system

The PIV system consisted of two Nd-YAG lasers that fire alternately, each at a rate of
15 Hz, giving a net sampling rate of 30 Hz. The pulse duration of the lasers was 5 ns,
ensuring that the images represented the instantaneous positions of the particles. The
laser beam was passed through an array of cylindrical lenses to produce a laser sheet
of thickness less than 1 mm. Neutrally buoyant, hollow silvered spheres of diameter
10 µm were used to seed the flow. Seed particle concentrations were varied from 3 ml to
6 ml per 500 gallons of the cold and hot water, and were well stirred into the water by
the sump pumps. A KODAK Megaplus digital camera, triggered synchronously with
the lasers, was used to record the images with arrays of 640 × 480 pixels. Typically,
1200 images were collected to obtain convergent statistics (Ramaprabhu & Andrews
2003). A labview based system was used to control triggering of the lasers and data
collection.

The displacement of a particle in two successive images gives the velocity vector
at that point. Our requirements for PIV were standard, and so we used the readily
available MATPIV program, a cross-correlation-based software package (Grue et al.
2000). The cross-correlation function R(x, y) was computed from the two image fields,
I1 and I2 as

R(x, y) =

M/2∑
i=−M/2

N/2∑
j=−N/2

I1(i, j )I2(i + x, j + y), (5)

where M = N = 2n − 1; n=3, 4, 5 . . . . The mean intensities were subtracted from I1

and I2 and the resulting value of R(x, y) was normalized by the correlation coefficient.
The location of the correlation peak with respect to the centre of the interrogation
window gives the local displacement vector. The vector field is smoothed by a signal-
to-noise ratio filter and a global histogram filter. Vectors with a signal-to-noise ratio
less than 1.1 or lying outside two standard deviations of the neighbouring vectors
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were replaced by interpolated values. The PIV software yields 1199 vector fields from
the 1200 greyscale images. First-, second-, and third-order statistics were computed
from the vector fields. One concern is that local density variations can influence the
refractive index, resulting in an apparent displacement of the particle position along
the line of sight. However, for the low values of density differences used in this
experiment, and the short beam traverse distances along the line of sight, this effect
was explored and found negligible (Ramaprabhu & Andrews 2003). Following the
method of Adrian (1997), we determined the error in our velocity measurements to
be ∼ ± 0.05 cm s−1 based on the uncertainty associated with the location of a particle.

2.2. Thermocouple system

The temperature diagnostics consisted of a vertical rake of thermocouples that were
positioned at different downstream locations in the channel. The thermocouple probes
were E-type (nickel-chromium and constantan) and welded at the tip to form a bimet-
allic junction. The thermal response of the E-type thermocouple was ∼ 0.001 s deg−1

(Wilson & Andrews 2002), while the accuracy was ± 0.1 deg. A 16-bit data acquisition
board collected data from the thermocouples at a maximum sampling rate of
100 000 Hz. To remove some of the noise, local averages of over 1000 samples were
performed, resulting in a net sample rate of 100 Hz. The welded thermocouple probe
tip was approximately 0.01 cm in diameter. At a downstream distance of 30 cm from
the splitter plate, a local mixing Reynolds number may be computed by balancing
the potential energy released against the turbulent kinetic energy of the flow to obtain
(Snider & Andrews 1994)

Rea
x =

√
gAt

6

(2hx)
3/2

ν
, (6)

where hx is the mix width (taken to be the distance between points where the mean
density is 5% and 95% of the cold or hot fluid) at a downstream distance x. At this
location, the Kolmogorov turbulent scale (ηk) is given by

ηk = hxRea−3/4

x . (7)

The corresponding Batchelor scale (ηB), which is relevant for scalar (thermal/density)
fluctuations is

ηB = ηk Pr−1/2, (8)

where Pr is the Prandtl number (Pr ∼ 7 for water at 20 ◦C). At x =30 cm, (8) gives
ηB = 0.02 cm, which suggests that the Nyquist resolution criterion is satisfied at the
current sampling rates. However, for x > 30 cm, this criterion is not met, and the
smallest scales of turbulent motion may not be fully resolved. The data collection
time was ∼ 160 s, which was chosen to allow more than 80 of the largest-scale struc-
tures to be recorded (the turnover time of the large-scale structures is given by
T =2hx/U ∼ 2 s, where U is the mean convective velocity of the flow). The long data
collection times and the high sampling rate resulted in capturing almost four decades
of frequencies. The configuration and details of the thermocouple system are further
described in Wilson & Andrews (2002), with a detailed consideration of the Batchelor
scale.

In (6), the Reynolds number was defined assuming that all the initial potential
energy in hx associated with the unstable density interface was converted completely
to kinetic energy. In a buoyancy-driven mix with no shear, the mean convective
velocity does not contribute to the dynamics of the buoyant mix. As a result, the
definition of a Reynolds number often becomes a matter of preference depending on
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Equation Definition Re

(6)

√
gAt

6

(2hx)
3/2

ν
1450

(9)
hxḣx

ν
1000

(10)
hxv∞

ν
1250

(11) v′λ/ν 60

Table 1. Reynolds number definitions for R-T flow.

the choice of a suitable velocity scale. Some commonly used definitions are reviewed
here. The self-similar nature of this flow may be incorporated into a Reynolds number
definition by using the mix width as the length scale, and its time derivative as the
corresponding velocity scale (Cook & Dimotakis 2001):

Reb
x =

hxḣx

ν
. (9)

An alternative definition uses the terminal velocity introduced earlier as the velocity
scale, resulting in a form close to (6):

Rec
x =

v∞2hx

ν
=

2hx

ν
0.7

√
Atghx/2. (10)

Implicit in (9) is the use of a root mean square (r.m.s) velocity scale v′ ∼ ḣx , whereas
(10) uses the terminal velocity of the bubbles in this flow. Finally, at the microscales,
a Taylor Reynolds number may be defined based on the Taylor length scale λ and
the r.m.s. velocity scale:

Reλ =
λv′

ν
. (11)

The Taylor Reynolds number is a universal measure of the state of turbulence since
it is defined independent of the large-scale features of the flow. For instance, it
has been argued that a Taylor Reynolds number of 100 is required to cross the
mixing transition threshold for all turbulent flows (Dimotakis 2000). The Reynolds
numbers computed from the above definitions are given in table 1 for x = 35 cm. All
the definitions based on large-scale features of the flow have similar values of the
Reynolds numbers, indicating that these different velocity and length-scale definitions
are equivalent.

2.3. PIV-S

To measure velocity and density fields simultaneously, a whole-field non-intrusive
technique called PIV-scalar or PIV-S (Ramaprabhu & Andrews 2003) was used. PIV-S
involves seeding the two fluids with different concentrations of seed particles (figure 12
shows an example photograph), and was shown to work well (Ramaprabhu &
Andrews 2003) in the present flow where the velocity jump between fluids is negligible,
and the density difference is small. Typically, the cold fluid was seeded with twice as
many particles as the hot fluid. The local average of the reflected light intensity can
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Figure 4. Volume fraction profiles from PIV-S (solid line), and thermocouple (circles)
at T ∼ 1.21.

be related to the density at that point. Thus,

ρ(xx, yc) ∝ 1

A

∫
I (x, y) dA ∝

N∑
j,k=1

I (xj , yk). (12)

The constant of proportionality in (12) need not be determined in the implementation
of this technique, thus removing the necessity for calibration runs. First-order density
statistics from this method agree well with those obtained from thermocouple
measurements at the same locations. Figure 4 is a comparison of mean volume
fraction (a non-dimensional density defined in § 3) profiles from both methods at
x ∼ 35 cm. Only the lower half of the mix-width is shown, and the y-coordinate is
normalized by the depth of the channel H . Section 3 of this paper also describes good
agreement for the second-order statistics at the centreline of the mix. Away from the
centreline, however, the high Schmidt number of the seed particles compared with the
Prandtl number leads to lower estimates of the amount of mixing. In particular,
the molecular mix, a mix parameter computed from this method and described below,
approaches a two-fluid (immiscible) limit near the edges of the mix. Also, the spatial
resolution of PIV-S is poor owing to the local averaging process. Nevertheless, there
is valuable information here, because simultaneous measurements of mean profiles of
density and r.m.s. velocities from PIV-S allow calculation of a global energy budget
and, consequently, the energy dissipation in this flow (§ 5).

3. Results and discussion
High-resolution (�x = �y = 0.03 cm) velocity data were collected at a sampling rate

of 30 Hz at 2 cm and 35 cm downstream from the splitter plate. Thus, the smallest
length scales captured with this technique are ∼ 0.06 cm. The data collected just off the
splitter plate, at 2 cm, represent the initial conditions of the flow. The fine-mesh screen
at the edge of the splitter plate creates a ‘grid-type’ turbulence, with a spectrum of
velocity perturbations in its wake. At 35 cm downstream, the hot and cold fluids are
well mixed and the flow has reached an observed self-similar state. The data presented
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X-location (cm) T-location Y-location (cm) Resolution

Thermocouple 1.0 0.03 0 �t = 0.01 s
2.0 0.07 0

10.0 0.34 0
20.0 0.70 0
30.0 1.00 0
40.0 1.39 0
50.0 1.74 0
60.0 2.08 0

PIV (low resolution) 0–8.0 0–0.305 −3.0–3.0 �t = 0.066 s
8.0–16.0 0.305–0.610 −3.0–3.0 �x = �y = 0.2 cm

16.0–24.0 0.610–0.916 −6.0–6.0
24.0–32.0 0.916–1.221 −9.0–9.0
32.0–40.0 1.221–1.527 −9.0–9.0
40.0–48.0 1.527–1.832 −9.0–9.0
48.0–56.0 1.832–2.137 −9.0–9.0

PIV (high resolution) PIV-S 2.0 0.07 0.0 �t = 0.033 s
35.0 1.21 0.0 �x = �y = 0.03 cm

Table 2. Thermocouple and PIV/PIV-S experiments.

here describe the more fully developed R-T mix. In addition, lower resolution
(�x = �y = 0.2 cm) velocity data were collected at x-locations ranging from 0 to
56 cm from a series of experiments each with a window size of 8 cm × 6 cm (table 2).
The data-sampling rate used in these lower resolution experiments was 15 Hz, and
these velocity fields were primarily used for computing the statistics at these locations.
The small velocity scales that are not resolved by this set of experiments contribute
little to the statistics here because of their small amount of energy.

Following Dalziel et al. (1999), we define a dimensionless time

T = t

(
Atg

H

)1/2

=
x

U

(
Atg

H

)1/2

. (13)

Here, the downstream distance x is converted to time t , using the Taylor hypothesis,
t = x/U . The definition of T incorporates the self-similar nature of the flow (here, g is
the acceleration due to gravity, x is the downstream distance, U is the mean convective
velocity, and H the depth of the channel). In self-similar units, the two locations
x = 2 cm and 35 cm (where the high-resolution data were collected) correspond to
T =0.07 and 1.21, respectively. The early- and late-time PLIF images from figure 2,
were taken at T ∼ 0–0.305 and T ∼ 1.22–1.52, respectively. The low-resolution PIV
experiments were performed at 0<T < 2.1. The mix width plots of Dalziel et al.
(1999) show a quadratic growth for T > 1, indicating the onset of self-similarity.
Temperature data were collected by thermocouples along the centreline of the mix
at 8 downstream locations (the location of the centreline was determined by a false
positioning method described in Ramaprabhu & Andrews 2003). These locations
correspond to 0.03<T < 2.08. In all of the experiments presented here, care was
taken to eliminate shear between the two fluid streams. Table 2 is a summary of all
the experiments reported in this paper.
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The range of temperature fluctuations and the extent of mixing in a Rayleigh–
Taylor flow are characterized by the following parameters:

f1 = lim
T →∞

1

T

∫ T

0

ρ − ρ2

ρ1 − ρ2

dt = lim
T →∞

1

T

∫ T

0

ρ − ρh

ρc − ρh

dt,

f2 = 1 − f1,

B0 = lim
T →∞

1

T

∫ T

0

(ρ − ρ)2 dt/�ρ2,

B2 = f1f2 = f1(1 − f1),

θ = 1 − B0

B2

,




(14)

where fi is the fraction by volume of the ith fluid (with f1 = fcold and f2 = fhot), and ρ

is obtained from (4) using thermocouple measurements, or from (12) from the PIV-S
measurements. Then, B0 is the intensity of turbulent density fluctuations and includes
the effect of mixing due to molecular diffusion; B2 is the corresponding conditioned
measure that would result if the two fluids were immiscible and does not account
for molecular mixing; and the parameter θ (Dankwerts 1952) quantifies the degree
of mixing (θ = 0 → no mixing, and θ = 1 → completely molecularly mixed fluids). As
explained in more detail later, B2 may also be interpreted as an intermittency factor
based on the density of the fluids.

The molecular mix θ affects the overall growth rate of the mix in the following
way. Consider the definitions of B0 and B2 as the non-dimensional turbulent density
fluctuations in the presence and absence of molecular diffusion, respectively. Then,

B0 = ρ ′2
0

/
�ρ2, B2 = f1f2 = ρ ′2

2

/
�ρ2, (15)

where the ρ ′2
0 and ρ ′2

2 refer to the turbulent density fluctuations for the miscible and
two-fluid cases, respectively, and �ρ = ρ1 − ρ2. Equation (1) for the growth rate of

the mix may be rewritten using the modified driving term 2

√
ρ ′2

0

h = 2gt2α

√
ρ ′2

0

/
(ρ1 + ρ2). (16)

This is a more natural choice for molecularly mixed fluids, since the density difference
available to drive the flow �ρ = ρ1 − ρ2 is reduced in the presence of diffusion. For a
two-fluid case at the centreline where f1 = f2 = 0.5, then

ρ ′2
0 = ρ ′2

2 = f1f2�ρ2 = (ρ1 − ρ2)
2/4, (17)

so that (16) reduces to (1).
For miscible fluids, we have

ρ ′2
0

ρ ′2
2

=
B0

B2

= 1 − θ, (18)

reducing (16) to

h = α̃Atgt2, (19)

where α̃ = α
√

1 − θ . At the centreline of the mix, measurements of θ have been found
to vary from 0.7 to 0.8 (Wilson & Andrews 2002), and remain reasonably constant
across the mix (see below). Assuming an intermediate value of θ =0.75, the presence
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Figure 5. Time evolution of scalar turbulence intensity and mix parameters measured
at the centreline.

of molecular diffusion serves to reduce the growth rate of the mix by a factor of 0.5.
The front tracking calculations of Glimm et al. (2001) suggest a two-fluid value for
α of 0.07, giving a net growth constant α̃ =0.5α = 0.035. This is consistent with the
value reported by most numerical simulations that have molecular diffusion in them.

The centreline time-evolution of the mix-parameters defined above and determined
from the thermocouple measurements, are shown in figure 5. Close to the splitter plate
(T ∼ 0.034), the mixing layer is diffuse and, as a result, θ values are high in this region
(and corresponding B0 values are low). As the mix develops farther downstream,
the fluctuation levels increase with the onset of the instability, resulting in a slight
drop in the value of θ . This corresponds to the stretching of the initial diffuse layer,
followed by rolling up into mushroom-shaped structures. This is also seen in the p.d.f.s
of density values (figure 6), which switch from an initial distribution with a single
peak (T =0.034) suggesting a diffuse region, to a distinctly bimodal distribution at
later times (T = 0.347), indicating fluctuating density fields. Eventually (T = 1.008),
turbulent diffusion serves to smooth out some of these fluctuations, and the histogram
regains a dominant peak corresponding to (ρ − ρ2)/(ρ1 + ρ2) = 0.5 at the centre of the
mix. As expected, the two-fluid parameter B2 remains relatively constant at a value
of 0.25. This further confirms that these measurements were indeed at the centreline
of the mix, since at the centre f1 = f2 = 0.5 and B2 = 0.25 according to (14). It is
noteworthy that all the parameters change little in the developing self-similar regime
of the mix (T > 1).

The mix parameter θ may also be measured from the two-dimensional density fields
obtained from PIV-S. The results are compared with thermocouple measurements
across the mix at x = 35 cm or T = 1.21 (figure 7). There is good agreement between
the two measurements at the centreline because it is a well-mixed region containing
a preponderance of small-scale velocities, as described later. Away from the centre,
θPIVS approaches a two-fluid value of zero, whereas the thermocouple measurement
indicates θ is reasonably constant across the mix. The lower diffusivity of seed particles
compared with thermal diffusivity causes the underestimation of θ that is seen in these
PIV-S measurements. It is interesting to note that R-T experiments, where salt was
used to create the density difference (Dalziel et al. 1999), also give similar θ values
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Figure 6. Probability density functions of centreline non-dimensional density at three
different times.

Figure 7. Profiles of θ from PIV-S and thermocouple at T = 1.21.

at the centreline in spite of the much lower mass diffusivity of salt compared with
the thermal diffusivity. So, near the centreline where mixing is highest, the difference
between an estimated particle Schmidt number (> 600), and the Prandtl number
(∼ 7) does not seem to play a role. This is because the centre of the mix region has
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Figure 8. Intermittency factor γ (based on a vorticity threshold) across the mix at T = 1.21.

more interfacial area than the edge, resulting in greater molecular diffusion and thus
molecular mixing. From a spatial convergence test (Ramaprabhu & Andrews 2003),
the volume fraction values were found to be reasonably constant for window sizes
between 16 and 32 pixels. For windows smaller than 16 pixels, the volume fraction was
found to approach two-fluid values owing to lack of sufficient samples for averaging.
Similarly, the value of θ is reasonably constant for window sizes between 16 and
32 pixels, and again approaches a two-fluid value for windows smaller than 16 pixels.

We attempt to quantify this by defining an appropriate intermittency factor γ .
A common definition of intermittency focuses on the vorticity in the fluid, γω, i.e.
rotational fluid is marked as turbulent fluid, and irrotational fluid is marked as
quiescent. An intermittency function, I , based upon vorticity is defined as (Pope 2000)

I (y, t) = H(|ω(y, t)| − ωthreshold), (20)

where ω is the out-of-plane component of the local vorticity field, ωthreshold is a small
positive threshold, and H is the Heaviside function. Thus, I is 1 for |ω| >ωthreshold

and zero otherwise. The intermittency factor is then given by

γω(y) = 〈I (y, t)〉, (21)

where 〈·〉 indicates time-averaging. In the present experiment, the cross-stream
(vertical) profile of γω is shown in figure 8 for T =1.21 (ωthreshold was chosen so
that ω2

threshold/〈ω〉2 was ∼ 5%). Unlike shear layers and wakes, where γω can reach a
maximum value of 1 at the centreline (LaRue & Libby 1976), the intermittency factor
reaches a peak value of 0.5 in our buoyancy-driven mix. This is due to significant
cross-stream transport of rotational and irrotational fluid, thus decreasing the value
at the centreline. However, this picture is incomplete, as we will show in the following.
For our purposes, we are interested in identifying the interface between the heavy and
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Figure 9. Intermittency factor (based on the two-fluid parameter B2) across the mix at
T = 1.21.

light fluids. Therefore, a more natural definition for the present buoyant mixing is an
intermittency factor (or a density intermittency factor) based on the volume fraction.

We take fthreshold = 0.5 as the threshold for defining a density intermittency
factor. Then, using the Heaviside function and instantaneous volume fractions
f ′

1 = (ρ − ρ2)/(ρ1 − ρ2), f ′
2 = 1 − f ′

1, we may define

N+(y, t) = H(f ′
1(y, t) − fthreshold),

N−(y, t) = H(fthreshold − f ′
2(y, t)).

Hence, 〈N+(y, t)〉 and 〈N−(y, t)〉 denote the probability of finding fluid 1 and 2,
respectively, at y; thus, 〈N+(y, t)〉 ∼= f1, and 〈N−(y, t)〉 ∼= f2 by definition of volume
fraction. Any definition of density intermittency will have to include the volume
fraction of the fluid, which can be interpreted as a conditional measure of the
density of the fluid and be symmetric about the centreline of the mix. This may be
accomplished by defining a density intermittency factor as

γρ = 1
2
(1 − (〈N+(y, t)〉 − 〈N−(y, t)〉)2) = 1

2
((f1 + f2)

2 − (f1 − f2)
2), (22)

using f1 + f2 = 1. In the above, the fthreshold term is eliminated when the Heaviside
operation is performed. This definition ensures that γρ reaches a peak value of 0.5 at
the centreline where f1 = f2 = 0.5 and goes to zero at the edges where f1 = 1 − f2 = 0
and vice versa. After some algebraic manipulation, (22) simplifies to

γρ = 2f1f2 = 2B2. (23)

Thus, a γρ value of zero implies the presence of a single fluid, and a value of 0.5
indicates that both fluids are present with equal probability (i.e. a large amount of
density intermittency). Figure 9 plots γρ as a function of y/H at T = 1.21 and shows
a peak value of 0.5 at the centreline. This indicates the presence of a large amount
of density intermittency as well as associated interfacial area at the centreline with a
value approaching the single-fluid limit at the edge of the mix. Thus, the structures
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Figure 10. Probability density functions of vertical and horizontal velocities at three
locations across the mix. (a) v′/v′

max = 1, (b) v′/v′
max = 0.5, (c) v′/v′

max = 0.2 corresponding
to y/H = 0, 0.13 and 0.2 respectively (T = 1.21). ——, u′; – – –, v′.

at the centreline are much more contorted, with greater interfacial area resulting in
molecular diffusion across the interface, as shown in figure 2(b).

These observations are also supported by velocity p.d.f.s at T = 1.14 for three
locations across the mix: at points where v′/v′

max = 1, 0.5, and 0.2 corresponding to
y/H = 0, 0.13 and 0.2, respectively (figures 10(a), 10(b) and 10(c), respectively) with
v′

max available from figure 16(b). The resolution in all three figures is the same, i.e.
the number of intervals across the dynamic range of the velocities is constant. At the
centre of the mix, where v′/v′

max =1, the vertical velocity distribution is flatter than the
horizontal velocity components and covers a wider range of scales; thus, the likelihood
of finding large velocities is roughly the same as that of finding small velocities. This
implies that there is a greater hierarchy of scales at the centre of the mix, resulting in
a greater interfacial area and hence enhanced mixing. Approaching the edge of the
mix with v′/v′

max = 0.5 and then 0.2, for both the horizontal and vertical components,
small velocities become more likely than large ones. In addition, the vertical velocity
p.d.f.s become more skewed and less Gaussian near the edge for reasons explained
by considering the skewness below.

The third and fourth moments of the velocity field represent the skewness and
flatness (kurtosis) of the velocity probability density functions. These functions are
conventionally normalized by the velocity r.m.s.:

Su =
〈u′3〉

〈u′2〉3/2
, Sv =

〈v′3〉
〈v′2〉3/2

, Ku =
〈u′4〉
〈u′2〉2

, Kv =
〈v′4〉
〈v′2〉2

, (24)

where 〈u′2〉 and 〈v′2〉 profiles are given in figures 16(a) and 16(b), respectively. Cross-
stream profiles of the skewness and kurtosis of the horizontal and vertical velocity
distributions are shown in figures 11(a) and 11(b), respectively. Su is close to zero
across the mix, since the horizontal velocity field is symmetric about the vertical.
However, Sv , is zero at the centreline and antisymmetric about it. Alternatively, the
predominant velocity determines the sign of skewness, because of the third power. It
may be noted that Sv > 0, for y > 0, as fluid is predominantly rising (the upper edge
of the mix), whereas Sv < 0 for y < 0 as fluid is predominantly falling (lower edge of
the mix). Neglecting the horizontal velocities, which cancel out due to symmetry, mass
conservation for the mix considered as a two-phase fluid gives f1v1 + f2v2 = 0, where
f1, f2 and v1, v2 are the volume-fraction and the vertical velocity components of
the heavy and light fluids, respectively. At the centreline, f1 = f2 = 0.5 and v1 = − v2,
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Figure 11. (a) Skewness and (b) kurtosis profiles across the mix at T = 1.21.

resulting in a symmetric p.d.f. and Sv =0. At the edge, f1 → 1 (and f2 → 0) v1 is a
small negative velocity while v2 is a large positive velocity. Conversely, as f1 → 0, v1 is
a large negative velocity and v2 has a small positive value. Thus, the vertical velocity
skewness profile is zero at the centreline, with positive values for y > 0 and negative
values for y < 0. (Beyond the edge of the mix, the skewness drops to zero owing to
the presence of random noise.)

The fourth moment of velocity, the kurtosis, is shown in figure 11(b). For a
Gaussian p.d.f., the skewness is zero and the kurtosis approaches a value of three. In
the present case, the vertical component Kv approaches the Gaussian value (K = 3)
at the centreline and is highly non-Gaussian at the edges. This is in agreement with
the skewness data, which also show Gaussian behaviour at the centre, and a non-
Gaussian trend at the edges. The symmetric profile of Kv arises from taking the
fourth power of the velocity fluctuations. The u-component has considerable jitter
across the mix, which are amplified when raised to the fourth power and is not shown
in figure 11(b).

We conclude that the presence of both fluids with equal probability, associated
with a high intermittency factor, and the hierarchy of scales, all contribute to the
enhanced mixing measured at the centreline. The next section is divided into three
subsections based on the nature of the velocity data presented, namely qualitative
aspects, statistics and spectral data.

3.1. Qualitative aspects

Figure 12 shows a pair of successive PIV-S images (separated by a time interval
of 0.033 s), in which the heavy fluid is seeded with a higher concentration of
particles than the lighter fluid. The difference in particle concentrations delineates
the structures in the flow. The images are 640 × 480 pixels, while the actual window
size is ∼ 6 cm × 4 cm. The convective velocity of the flow was 4.5 cm s−1 in all of the
experiments reported here. The images were taken at T =1.21 and are in the region
of self-similar development (T > 1) of the buoyancy mix. The mushroom-shaped
structures are characteristic of Rayleigh–Taylor instability. These vortices are three-
dimensional structures, with the vorticity field resembling that of a vortex ring. This
is a predominantly irrotational flow, with most of the vorticity concentrated within
the roll-up. Observations from the experiment of the axisymmetric nature of these
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Figure 12. Two successive particle images showing mushroom-shaped structures
characteristic of R-T instability.

Figure 13. (a) Velocity vector field and (b) vorticity field obtained by cross-correlating the
image files of figure 12.

mushroom structures imply isotropy between the streamwise and spanwise velocity
components.

Figure 13(a) shows the velocity vector field (from which the mean convective velocity
has been subtracted) obtained as a result of correlating the two greyscale images.
A 16 × 16 pixel interrogation window was used to compute the vector fields. The
corresponding out-of-plane z-vorticity component (in s−1) is presented in figure 13(b).
From the uncertainty in velocity measurements, the error in vorticity was determined
to be ∼ ± 0.05 s−1. Apart from a few bad vectors at the edge, the vector field captures
the recirculating regions seen in the original images. The same is true for the vorticity
field, where the two-dimensional slices of the recirculating zone show up as alternate
regions of positive and negative vorticity.

The vorticity field seen in figure 13(b) is generated primarily through the baroclinic
interaction of the density gradient and the pressure gradient (acceleration). For early
stages in the instability development, the vorticity equation may be written as (Turner
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Figure 14. Centreline vertical and horizontal velocity r.m.s. as a function of
non-dimensional time.

1980)

Dζ

Dt
= ζ · ∇u + ν∇2ζ + ∇p ⊗ ∇

(
1

ρ

)
. (25)

The first two terms on the right-hand side of the above vorticity equation indicate
changes in vorticity ζ , produced by vortex line stretching and diffusion. The third term,
unique to buoyancy driven flows, describes vorticity generation through misalignment
of the local density gradient and the pressure gradient. During the initial stages of our
experiment, the pressure gradient is the hydrostatic pressure introduced by gravity, and
vorticity generation can occur when surfaces of constant density are displaced away
from the horizontal. The initially sinusoidal vortex sheets evolve through localized
stretching, before rolling up to form coherent vortices in the shape of mushrooms.
Depending on the vortex sheet thickness, secondary instabilities (shear-driven or
buoyancy-driven) may develop within the region of roll-up (e.g. the single-mode
experiments of Waddell, Niederhaus & Jacobs 2001).

3.2. Statistics

From the low-resolution PIV experiments described earlier in this section and given
in table 2, the centreline r.m.s. values of the vertical, v′, and horizontal, u′, velocity
components at locations 0 < T < 1.8 are shown as a function of time in figure 14. The
v′ values, after an initial period of exponential growth (T < 0.5), grow linearly with
time in the self-similar region. (However, it is not clear if the condition for exponential
growth of initial disturbances, hλ  λ is satisfied in these experiments.) The centreline
vertical velocity normalized by

√
AtgH reaches a peak value of 0.28 at T = 1.9. The

vertical velocity at the centreline can be related to the mix width of (1) by

v′ =
dh

dt
= 2αAtgt. (26)

Note that (26) is valid only in the self-similar region of the flow. Thus, from the
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Figure 15. (a) α = v′/(2Atgt) at the centreline plotted as a function of T . (b) lm = v′2/
(0.72Atg/2) at the centreline plotted as a function of T . Inset shows lm close to the splitter
plate.

time evolution of v′, we can determine the growth constant α by computing the ratio
v′/2Atgt . This ratio is plotted as a function of the non-dimensional time in figure 15(a).
The saturation of α at late time to a constant value of 0.07 suggests that the flow
reaches self-similarity in these experiments. This is an interesting result, as in the
past we obtained the same value for α of 0.07 in this experiment (Snider & Andrews
1994) by measuring the mix width h (based on the 5% and 95% threshold for the
volume fraction) directly and relating it to α through (1). Therefore, by using (26)
and obtaining α = 0.07 from the centreline value of v′, we imply that the expansion
of the mix is driven by velocity fluctuations that occur across the whole mix and
not just the edge. This characterization is supported by observations of the mixing
layer, shown in figure 2, where large-scale structures span the mix and dominate the
velocity fluctuations. As a result, many of the statistics presented in this work remain
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Figure 16. (a) u′ profiles at different T -locations; (b) v′ profiles at different T -locations.

practically constant across the mix. Spectral analysis of the velocity fluctuations later
provides further support for this interpretation of the mix dynamics.

At early times, we may expect a single wavelength to dominate the dynamics.
The centreline vertical velocity may then be approximated by the terminal velocity
(Andrews & Spalding 1990), a natural extension of Layzer’s (1955) terminal velocity
formulation for At = 1,

v′ ∼ 0.7
√

Atglm/2, (27)

where lm is the dominant growing wavelength. We may then determine the value
of lm in this flow by plotting v′2/(0.72Atgt/2) in figure 15(b). The value of lm thus
obtained from the flat region close to the splitter plate (at 0.07 <T < 0.12) was 1.05 cm
(figure 15(b) inset); a peak in the velocity spectral data, close to the inlet, around this
value further confirms the presence of a dominant wavelength at lm ∼ 1.05 cm (§ 3.3).
The appearance of the second plateau between T ∼ 0.15 and T ∼ 0.2 is believed to
be the result of pairing of these structures. At late time, the value of lm reaches a
maximum of ∼ 27 cm comparable to the channel depth of 30 cm, although it is no
longer accurate to characterize the dynamics in terms of a single wavelength. Not
surprisingly, the single-mode dynamics in this experiment are restricted to very early
stages of the R-T development.

The cross-stream profiles of horizontal and vertical velocity fluctuations are shown
in figures 16(a) and 16(b), respectively. The velocity axes are retained in dimensional
coordinates to give a sense of the relative magnitudes of the peak values as they
evolve in time. Vertical velocity fluctuations dominate over the horizontal velocity
component and provide most of the transport of mass, momentum and energy. The
figure indicates that for T > 0.76, the velocity profiles evolve in a shape-preserving
manner and will collapse onto a single curve when normalized by the appropriate
variables.

We normalize with a saturation velocity defined by u∞ = 0.7
√

Atghx/2, where hx

is the local mix-width computed from hx = αAtgt2 with α = 0.07. Then, u∞ and hx

are chosen as the self-similar scales and used to normalize the cross-stream velocity
profiles in figure 16. The results for the horizontal and vertical velocity fluctuations are
shown in figures 17 and 18, respectively, and show a good collapse for all T -locations
except T = 0.76 where the flow may not be fully self-similar. The vertical velocities
expressed in terms of the saturation velocity have a peak around 1, showing that
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Figure 17. u′ profiles at different T -locations expressed in self-similar units.

Figure 18. v′ profiles at different T -locations expressed in self-similar units.

this choice of the self-similar variable is appropriate and physically meaningful. Since
there is no shear in this experiment, v′ dominates over u′ everywhere. This dominance
decreases with downstream distance from a ratio ∼ 2 close to the splitter plate,
to a ratio of ∼ 1.6 as the structures become more three-dimensional. Furthermore,
by T = 1.21 the ratio v′/u′ is almost constant across the mixing layer (figure 19),
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Figure 19. Ratio of v′/u′ across the mix at T = 1.21

suggesting an existing equilibrium between the u′- and v′-kinetic energy production
terms everywhere.

J. R. Ristorcelli (personal communication 2001) suggested that the large-scale
anisotropy between u′2 and v′2 can also be characterized through the normalized
anisotropy tensor, bij . A discussion on the geometry of the small scales is deferred
until § 3.3. Following Pope (2000), the anisotropy tensor is defined as

bij =
〈uiuj 〉
〈ukuk〉 − 1

3
δij , (28)

where δij = 1 for i = j , 0 otherwise, and 〈ukuk〉 is twice the kinetic energy. Thus,
this is the deviatoric part of the Reynolds stress tensor normalized by the kinetic
energy term. Pope (2000) shows that the anisotropic stress tensor is responsible for
the transport of turbulent momentum. In a R-T mix, the cross-correlation term 〈u′v′〉
is negligible since the mushroom-shaped structures have left–right symmetry about
the centre, so u′v′|right = − u′v′|left. Similarly, for u- and w-components, 〈w′v′〉 and
〈w′u′〉 ∼ 0. Thus,

〈uiuj 〉 =


〈u′2〉 0 0

0 〈v′2〉 0

0 0 〈w′2〉


 . (29)

In (29), 〈u′2〉 and 〈v′2〉 are measured, and 〈u′2〉 = 〈w′2〉 is taken from axisymmetry of
the coherent structures. For isotropic turbulence, 〈uiui〉/〈ukuk〉 =1/3 and so bii =0.
Also, − 1/3 � bij � 2/3, where the upper and lower limits represent one-dimensional
and two-dimensional distributions of turbulent kinetic energy, respectively. Thus, bij

characterizes the geometry of the turbulence, independent of the amplitude of the
fluctuations.

Figures 20(a) and 20(b) are plots of the anisotropy tensor across the mix at
T = 0.07 and T =1.21, respectively, where buu corresponds to the horizontal velocity
component, and bvv corresponds to the vertical velocity component. At both times,
near the centre of the mix, most of the transport appears to be in the vertical
direction. Once again, we see that the statistics are reasonably constant across the
mix at T =1.21. It appears that at both locations bii → 0 near the edges of the mix,
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Figure 20. Profiles of the anisotropy tensor across the mix at (a) T = 0.07, and (b) T = 1.21.
——, bvv; — · —, buu.

Figure 21. Profiles of ρ ′u′/�ρ(AtgH )1/2 (solid line), and ρ ′v′/�ρ(AtgH )1/2 (dashed line)
across the mix at (a) T = 0.07 and (b) T =1.21.

which is attributed to the decay of turbulent fluctuations in this region rather than
any inherent local isotropy. At T =0.07, the drop off near the edges is more gradual,
suggesting the presence of a viscous diffusive layer. Thus, it appears that the mix at
the end of the splitter plate consists of a central region where buoyancy dominates
padded by viscous layers at both the top and bottom. The geometry of the small
scales is discussed in the following section.

The primary transport term in an R-T flow is the mass flux term 〈ρ ′v′〉, which can
be computed from PIV-S data. The results normalized by �ρ(AtgH )1/2 are shown for
T =0.07 and T = 1.21 in figure 21. At both locations, 〈ρ ′u′〉 is negligible, owing once
again to the left–right symmetry of the mushroom-shaped structures, but 〈ρ ′v′〉 has a
peak that increases in magnitude with distance downstream. The vertical mass flux is
negative because a packet of fluid that is lighter than its neighbouring fluid particles
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(ρ ′ ≡ ρ − ρ < 0) will travel upwards with a velocity v′(v′ > 0) and vice versa, giving a
negative correlation between ρ ′ and v′. These fluxes are more commonly normalized
by �ρu∞ (Ramaprabhu & Andrews 2003). These results should be interpreted with
caution away from the centreline, where θPIVS reverts to a two-fluid value.

3.3. Spectra

To study the structure of small scales, velocity and density spectral data are presented
in this section in the wavenumber domain. The velocity spectra were computed
by extracting a velocity time series at the centreline at certain spatial locations,
and then calculating the power associated with the (mean-subtracted) signal in the
Fourier domain. To compare with the wavenumber spectra obtained directly from
spatial variations in the velocity field, the temporal data have been converted to
spatial data first using the Taylor hypothesis, and the spectra then computed in the
wavenumber domain. Similarly, density fluctuation spectra have been computed from
the temperature time series (converted to spatial data) obtained from thermocouple
measurements. The density data obtained from the equation of state, are first non-
dimensionalized to give ρ∗ = (ρ − ρ2)/(ρ1 − ρ2). Then, the scalar energy spectra are
computed using the equation

Eρ ′(k) =
2�x

N

∣∣∣∣∣
N−1∑
i=0

ρ∗
i exp(2πjkxi)

∣∣∣∣∣
2

, (30)

where N is the number of samples, �x = U�t is the sampling interval, and j =
√

−1.
Thus, the scalar energy spectrum is the wavenumber representation of B0, i.e.∫ ∞

0
Eρ ′(k) dk = B0.

The non-dimensional energy spectra of density fluctuations Eρ ′(k)H −1, at
T = 0.034(x ∼ 1 cm) is shown in figure 22(a). The corresponding compensated energy
spectrum k4Eρ ′(k) (normalized as k4Eρ ′(k)H 3) is plotted in figure 22(b). The factor k4

is used to illustrate regions with a slope of −4, which will appear horizontal in the
compensated spectrum. Inspection of figure 22(b) shows a region of zero slope toward
the higher wavenumbers, an exponential −4 collapse that corresponds to the presence
of a viscous diffusive layer at the start of the mix formed in the wake of the splitter
plate (Corrsin 1951). At this early time, no equilibrium has been achieved between
the production and dissipation terms as evidenced by the absence of an inertial range.
From figure 22(a), it is evident that most of the energy is instead concentrated evenly
in the low-wavenumber region of the spectrum (kH < ∼ 20).

The corresponding velocity spectra Eu′(k) and Ev′(k) at T ∼ 0.07 normalized by
H 2Atg are shown in figure 23 and have a similar two-region structure: a flat region
at the low-end of the wavenumber range followed immediately by a steep (slope ∼
− 4) dissipative high-wavenumber region. Similar to the density spectra, there is a
peak around kH ∼ 20 corresponding to a dominant wavepacket. Without this initial
dominant wavepacket, the k−4 fall-off would have started earlier, and the dip seen
just before kH ∼ 20 is indicative of this collapse. Consistent with the profiles of 〈u′2〉
and 〈v′2〉 seen earlier, vertical fluctuations dominate, particularly at low wavenumbers,
which make up most of the energy. It is believed from these measurements that for this
experimental set-up, the velocity spectrum, rather than the density spectrum, at the end
of the splitter plate represents the true initial perturbation to the flow. This is because
velocity perturbations are shed from the splitter plate, which lead to the formation
of density perturbations in the wake. This is in contrast with Richtmeyer–Meshkov
experiments where the initial perturbation is provided directly to the density interface.
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Figure 22. Density fluctuation spectrum (a) at T = 0.034 at the centreline. The dashed line
represents kH= 20. (b) Compensated fluctuation spectrum k4E(k). Solid line represents the
horizontal.

Figure 23. Frequency velocity spectra at T = 0.07 at the centerline. The dashed line
represents kH ∼ 20. ——, v′; – – –, u′.

The velocity spectra obtained here may be used to initialize numerical simulations
of Rayleigh–Taylor flows that are often initialized with density perturbations. Such
simulations of our experiment are currently underway, and should do much to
resolve the differences in α between experiments and numerical simulations. We note
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Figure 24. (a) Centreline density fluctuation spectrum E(k) at T = 1.008 and compensated
fluctuation spectra kmE(k) where (b) m= 5/3, (c) m= 3, and (d) m= 5. Solid line represents
the horizontal.

the work of Dalziel et al. (1999), who used initial velocity spectra from their barrier
experiments, and report good quantitative agreement in the large-scale measures such
as the mix width. The perturbations in our experiment are primarily two-dimensional
owing to small-scale wake shedding off the end of the splitter plate, with short-
wavelength modes (ripples) in the third horizontal direction across the flow. As
mentioned previously, the dashed line indicating lm = 1.05 cm corresponds closely to
a peak in the energy spectra, showing that the early-time dynamics shown here are
dominated by a single wavelength that may also be conveniently represented in a
numerical simulation.

Figures 24(a) and 25(a) show the density fluctuation spectra at times T = 1.008
and T = 2.086, respectively. The compensated energy spectra kmEρ ′(k) (normalized
as kmEρ ′(k)Hm−1) are also plotted in figures 24(b) and 25(b) m =5/3, (c) m =3 and
(d) m =5. Figures 24 and 25 are snapshots of the density fluctuation spectra at early
and late stages of the self-similar evolution. At each stage, there appear to be four
distinct regions in the fully developed scalar spectrum (Wilson & Andrews 2002): (i) an
energy containing range; (ii) an inertial subrange with nearly a −5/3 slope; (iii) a
viscous-diffusive subrange with a −3 slope; and (iv) a steeper diffusion dominated
region with a −5 slope. Figure 25 shows that with time, the viscous-diffusive layer
is relegated primarily to the smaller scales where the energy cascade is due to
stretching of fine-scale structures by the local velocity fields. Finally, at T = 2.08, the
−5 region occupies a very small portion of the spectrum. This process is accompanied
by buoyancy-driven filling in (owing to the development of the mushroom-shaped
coherent structures) of the −5/3 portions of the spectra. Since Re = 2hḣ/ν ∝ t3 in this
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Figure 25. (a) Centreline density fluctuation spectrum E(k) at T = 2.08 and compensated
fluctuation spectra kmE(k) where (b) m= 5/3, (c) m= 3, and (d) m= 5. Solid line represents
the horizontal.

Figure 26. Frequency velocity spectra at the centreline at T = 1.21: (a) raw spectra and
(b) spectra smoothed using a window-averaging process. ——, v′; – – – u′.

flow, the inertial range increases in width rapidly, spanning almost two decades of
frequencies by T = 2.08.

In figure 26(a), the velocity spectrum at T ∼ 1.21 also shows an inertial range with
approximately a −5/3 slope and a dissipative range with a −3 slope. To elucidate the
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slopes in the velocity spectra, a moving window-averaging process was used that pre-
served the integral of Eu′(k) and Ev′(k) to within 1%. Figure 26(b) presents the results
of this smoothing process, with a window size of 20 points. Again, at the large scales
there is considerable anisotropy between the horizontal and vertical components.
However, at higher wavenumbers, there is a convergence of energy associated with
the horizontal and vertical velocities, indicating a tendency towards isotropy at these
scales. Although we capture up to two decades in the wavenumber domain, we do not
completely resolve the dissipative scales, as evidenced by the saturation (flattening) at
large wavenumbers. From (6), Rex ∼ 1450 at T ∼ 1.21. The corresponding Kolmogorov
time scale is (Tennekes & Lumley 1972)

τk = TRe−1/2
x = 0.052 s. (31)

Here, τk is the Kolmogorov time scale and T is the integral time scale (=2hx/U ).
Thus, at a sampling rate of 30Hz (�t = 0.03 s), the corresponding Nyquist limit
(∼ 0.026 s) is not satisfied. Furthermore, there is also some spatial averaging due to
the finite size of the PIV window, which could contribute to a smearing of the signal
at higher frequencies.

In the self-similar region of the flow (T > 1), an equilibrium is achieved between
the production and dissipation terms of the kinetic energy equation. This equilibrium
manifests itself as the −5/3 region in the spectrum. The universal inertial range spec-
trum is given by (Tennekes & Lumley 1972)

E(k) = Aε2/3k−5/3, (32)

where ε is the kinetic energy dissipation rate and A is a universal constant. From
the u′ and v′ velocity spectra, the net three-dimensional kinetic energy spectrum may
be computed by assuming isotropy between u′- and w′-components of the velocity
fluctuations. In (32), A was determined through a curve fit of the experimental data
to E(k) to be ∼5 (A ∼ 1.5 for most turbulent flows, Tennekes & Lumley 1972). In the
above, ε was determined from the integral of D(k) the dissipation spectrum given by

D(k) = 2νk2E(k), (33)

where ν is the viscosity and ε =
∫

D(k) dk. Correspondingly, the production spectrum
P (k) can be written as

P (k) =
2πB

A1/2

S2

ε1/3
k−2/3E(k), (34)

where S is the dominant strain rate in the flow (S = u/l, where u and l are the velocity
and length scales given by u = v′ and l = u3/ε, respectively, and B is another universal
constant). By fitting the experimentally measured P (k) to (34), B was determined to
be 0.6 (B ∼ 0.3 for a typical turbulent flow, Tennekes & Lumley 1972). The difference
between the measured values of A and B from those obtained from other flows
is believed to be due to the moderate values of Re employed in the current work.
Thus, P (k) represents the production of kinetic energy primarily due to straining of
eddies by successively larger eddies. Figure 27 is a plot of the above defined spectra for
T = 1.21. Production is dominant at low wavenumbers, and dissipation is dominant at
high wavenumbers. The intermediate region (enclosed by the solid lines), where P (k)
and D(k) intersect, is thus the inertial subrange. In this subrange, the energy transfer
spectrum T (k) = (2π/A3/2)kE(k)s(k) has a zero slope indicating constant energy flux.

Wavenumber power spectra were also obtained by taking velocity data points
along a vertical slice of the two-dimensional velocity field. The higher wavenumbers
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Figure 27. Spectra of total kinetic energy E(k), production P (k), dissipation D(k), and
transfer T (k) at T = 1.21 at the centreline.

Figure 28. Velocity field from figure 13(a) processed through the iterative-PIV technique.

were captured by repeating the experiment, with the PIV camera placed much closer
to the channel. This reduced the physical size of the window from 6 cm × 4 cm to
3 cm × 2 cm, thus doubling the spatial resolution. A further increase in resolution
was obtained by using an iterative PIV technique (Scarano & Riethmuller 1999), an
approach similar to that used in multi-grid numerical simulations. In the first iteration,
the displacement vector is computed to integer accuracy. The interrogation window
size is then halved and the integer displacement is used to search for a correlation
peak, thus giving a velocity vector that is of subpixel accuracy. Figure 28 shows
the vector field of figure 13(a), but processed using the iterative approach, giving
twice the resolution. Thus, with both refinements we are able to achieve a four-fold
improvement in resolution, and we can capture turbulence length scales as small as
0.03 cm.

Figures 29(a) and 29(b) are plots of the wavenumber spectra at T = 0.07 and
1.21, obtained from the above process. The structural properties are similar to the
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Figure 29. Wavenumber velocity spectra at the centreline at (a) T = 0.07 and (b) T = 1.21.

spectra obtained from time series data: anisotropy at the large scales and a tendency
towards isotropy at the smaller scales. At T = 0.07, the wavenumber spectrum shows
a flat top and a steep dissipative range at high wavenumbers. The spatial resolution
at this Reynolds number is sufficient to capture the Kolmogorov scales. Also, at
T ∼ 1.21, there is a distinct inertial range with the −5/3 slope. For the u′ and the
v′ velocities, the spectra were constructed by overlaying the individual spectra from
each wavenumber range. The tailing off seen at the end of each of these spectra is
due to noise saturation at that resolution. Thus, by coming in closer and applying
the iterative PIV technique, both the resolution and the accuracy of the measured
wavenumber spectra have been improved.

From the results, it is evident that buoyancy forcing at small Atwood numbers does
not affect the formation of a −5/3 inertial range, in accordance with the classical
Obukhov–Corrsin theory for turbulent scalar fluctuations (Obukhov 1949; Corrsin
1951). The scaling argument proposed by Zhou (2001) for the velocity spectra of a
Rayleigh–Taylor flow is extended here to scalars. Zhou argues that the kinetic energy
dissipation is a function of the timescale of decay of triple velocity correlations, τ (k),

ε ∼ τ (k)k4E2(k), (35)

where E(k) is the kinetic energy spectrum, k is the wavenumber, and the exponents in
the above equation are obtained from dimensional analysis. In the absence of external
forcing on the energy containing eddies (e.g. homogenous, isotropic turbulence), τ

may be chosen as the timescale of nonlinear interactions among the energetic modes.

τ (k) = [k3E(k)]−1/2. (36)

Substituting for (36) in (35), the classical Kolmogorov form of the energy spectrum is
recovered:

E(k) ∼ ε2/3k−5/3. (37)

In the presence of external buoyancy forcing, the governing timescale is supplied by
gravity. Thus, τRT =(kAtg)−1/2, giving (Zhou 2001)

ERT (k) ∼ (gAt )
1/4ε1/2k−7/4. (38)

The constant of proportionality in (38) was determined to be ∼ 3 from our experi-
mental velocity data. An extension of the above argument may be proposed for
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Figure 30. Time evolution of exponential curve-fit index, p, for centreline temperature
measurements.

buoyancy forcing of the scalar fluctuation spectrum. The dissipation of scalar variance
is given by (Tennekes & Lumley 1972)

N ∼ k2Escalar(kERT )1/2. (39)

Substituting for ERT (k) from (38), we obtain

Escalar
RT ∼ N (Atg)−1/8ε1/4k−13/8, (40)

giving a power law close to the −5/3 observed in the present experiments. For
T ∼ 1.008, the constant in (40) was determined from our data to be ∼ 1. Thus, it
appears that the buoyancy forcing does not significantly alter the power law of the
inertial range.

The spectral structure of temperature (density) fluctuations at each time can be
quantified through an exponential curve fit, E(k) ∼ e−p . The best fit to the data is
obtained by performing a Nelder–Mead simplex direct search (Nelder & Mead 1965)
in p-space by minimizing the function E(k) − e−p . For Re → ∞, p should → 13/8
for density fluctuations in R-T flows. Figure 30 is a time history of p and shows
that this asymptotic value is never reached owing to the finite values of Re in this
experiment. At early times, p ∼ 2.5 is highest owing to the presence of the viscous-
diffusive layer with an exponential drop-off. However, the onset of self-similarity
(T ∼ 1.008) is clearly marked by the attainment of a constant value by p (∼0.85). This
implies that the structure of the scalar spectra is preserved in the self-similar regime
even as it contains regions where the slope is not −13/8. These are primarily the
energy-containing scales and the diffusive scales. At high enough Re, it is expected
that these scales will occupy a much smaller percentage of the spectral width giving
a value for p approaching 13/8.
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Taylor length scale, λx 0.29 cm
Taylor length scale, λy 0.62 cm
Vertical velocity scale, v′ 0.82 cm s−1

Horizontal velocity scale, u′ 0.45 cm s−1

Taylor Reynolds number, Reλy 60
Kolmogorov length scale, η 0.027 cm

Table 3. Taylor scales at T = 1.21.

4. Taylor microscales
More significant than the Kolmogorov scales are the Taylor microscales associated

with the local strain rate, and can be directly obtained from the turbulent velocity
fluctuations. The Taylor length scales, λu and λv , associated with the horizontal and
vertical velocity fluctuations are given by

λu(t) =
[
− 1

2
f ′′(0, t)

]−1/2
, λv(t) =

[
− 1

2
g′′(0, t)

]−1/2
, (41)

where f (r, t) and g(r, t) are the non-dimensional autocorrelation functions given by

f (r, t) = 〈u(x + r, t)u(x, t)〉/〈u2〉,
g(r, t) = 〈v(x + r, t)v(x, t)〉/〈v2〉.

Thus, the Taylor microscale is the r-intercept of the osculating parabola f (r) at r = 0
(Pope 2000).

From the velocity data, a point at the centre of the mix was picked, and its
autocorrelation function in space was computed. This process was repeated for other
datapoints in the vicinity, and the mean Taylor length scale was determined. A
histogram of the Taylor scales also showed a peak around the mean value. Like much
of the velocity statistics described in § 3.2, it was found that the Taylor scales did not
vary significantly across the mix. Thus, we present only the centreline values in the
following.

The results are presented in table 3, along with the Kolmogorov scales for com-
parison. The Taylor scales in space show a tendency toward anisotropy with a λy/λx

ratio approaching a value of 2. Cook & Zhou (2002) in their DNS simulations report
a ratio of 1.4 at T > 2.5 (for ρ2/ρ1 ∼ 3). Furthermore, the Taylor microscales are
approximately 10–20 times the size of the Kolmogorov scales. Taking the velocity
scale associated with the Taylor length scales to be the r.m.s. of vertical velocity
fluctuations, a Taylor scale Reynolds number may be computed for the present
experiment as

Reλ =
λv′

ν
= 60. (42)

This value is less than the threshold for mixing transition for turbulent flows
(Reλ ∼ 100) and is expected to cross this value further downstream. However, we
observe self-similarity has been achieved in these experiments as is evidenced by the
p.d.f.s, spectra, and velocity profiles (for T > 1), even though our Taylor Reynolds
number of 60 is less than the value of 100 suggested (Dimotakis 2000) for mixing
transition. Thus, even at low Atwood numbers, there is surely a differential straining
of eddies in the direction of gravity, resulting in anisotropy of velocity fluctuations at
all but the smallest scales.
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Figure 31. Spectra of S/s(k) showing tendency toward isotropy at higher wavenumbers
for the centreline velocity spectra.

This tendency toward anisotropy may be quantified by the local (in wavenumber
space) strain rate. For any eddy of size 2π/k, with a characteristic velocity scale
defined as [kE(k)]1/2, the characteristic strain rate can be defined as (Tennekes &
Lumley 1972)

s(k) =
(kE(k))1/2

2π/k
=

(k3E(k))1/2

2π
. (43)

Thus, the local strain rate increases with decreasing eddy size, so that the smallest
eddies undergo the severest straining. Following Tennekes & Lumley (1972), taking
the time scale 1/s(k) to represent the time required to return to isotropy once the
strain field is removed, the eddies with large k are quickest in their realignment. So
the non-dimensional paramater S/s(k), where S is the mean strain rate, characterizes
the degree of isotropy (large S/s(k) → anisotropy). S/s(k) is plotted for the velocity
spectrum at T ∼ 1.21 in figure 31 and shows anisotropy at all but the smallest
scales. This is consistent with the picture depicted by the velocity spectra and Taylor
microscales.

5. Energy budget
Following Youngs (1994), from our simultaneous measurements of velocity and

density fields, the net kinetic energy dissipation from the initial state of the flow is
computed. The initial potential energy PEi , associated with the flow, is calculated
assuming a stepfunction at z =H/2 for the density profile at T =0. Thus,

PEi =

∫ H

0

ρstepgz dz =

∫ H/2

0

ρ1gz dz +

∫ H

H/2

ρ2gz dz. (44)

Also, at T = 0, KEi ∼ 0, since there is negligible energy associated with velocity fluc-
tuations. Further downstream, the potential energy at T = 1.21 is computed from the
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measured density profile as

PEf =

∫ H

0

ρmeasuredgz dz ∼=
n∑

i=0

ρigzi�z. (45)

The potential energy released to the flow by T =1.21 is then given by PEreleased =
PEf − PEi . Some of this energy is converted into kinetic energy, which can be
directly obtained from our measured velocity profiles of u′ and v′. As previously
mentioned, observations of the axisymmetric mushroom structures mean we may
take the turbulence as homogeneous with respect to the streamwise direction x and
the spanwise direction z, and set 〈u′2〉 = 〈w′2〉. Then,

KEgenerated = 1
2

∫ H

0

ρ(2〈u′2〉 + 〈v′2〉) dz, (46)

and the net kinetic energy dissipation is given by

D = PEreleased − KEgenerated. (47)

The net KE dissipation as a fraction of the potential energy released, D/PEreleased was
determined from our measurements to be 0.49 at T ∼ 1.21. Youngs (1994) reported a
value of 0.52 obtained from three-dimensional numerical simulations, and significantly
lesser values from two-dimensional simulations (D/PEreleased ∼ 0.06) since dissipation
is primarily a three-dimensional mechanism. For a self-similar mix, characterized by
the length scale gt2, it is expected that D/PEreleased and KEgenerated/PEreleased become
constant in the self-similar regime. Thus, we find good agreement between the present
experiments and related, but higher Atwood number, three-dimensional simulations.

6. Conclusions
The evolution of small-Atwood-number (< 10−3) Rayleigh–Taylor (R-T) mixing

into self-similar turbulence has been studied through high-resolution temperature and
velocity measurements. The velocity measurements were obtained from the particle
image velocimetry technique, while temperature measurements were made using a
rake of E-type thermocouples placed across the mix. In addition, using the PIV-S
technique, simultaneous measurements of velocity and density fields have been
obtained.

In this experiment, the R-T mix is initialized with a spectrum of velocity perturba-
tions that, after a stage of linear growth, evolve through mode-interactions and
successive wavelength saturation. The fully developed mix grows quadratically in
time, with a self-similar structure. The self-similarity is evident here through velocity
and density frequency spectra that evolve in a shape-preserving manner. The velocity
profiles also collapse onto a single curve when normalized by suitable similarity
variables. The mix width development was characterized using centreline vertical
velocity fluctuations, rather than the mix width itself. The quadratic growth rate
constant α was measured at 0.07, which is in good agreement with previous measure-
ments from the experiment using the mix width based on the 5% and 95% threshold
for the volume fractions. This verifies observations, and results from velocity and
density spectra, that large-scale structures dominate the mixing and contain most of
the kinetic energy of the mix. It also implies that relatively simple models, based
on driven centreline velocity fluctuations and density fluctuations, would suffice to
capture the overall development of the mix.
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The internal structure of the self-similar mix is anisotropic with vertical velocity
fluctuations dominating the horizontal (streamwise and transverse) components. The
ratio of v′/u′ is ∼ 2, and appears to be constant across the mix, as the mushroom-
shaped structures are convected up and down the mix without much change in shape.
This significant cross-stream flux limits the intermittency factor (based on a vorticity
threshold) to a maximum of 0.5 at the centre of the mix, as opposed to a value of
1 for shear layers. A more natural definition for intermittency for buoyancy-driven
turbulence is suggested here based on the two-fluid density fluctuation B2 and takes
a value of 0.5 at the centreline.

The anisotropy of fluctuating velocity components extends to the Taylor scales,
which also exhibit a preferential straining in the direction of gravity. It might be
expected that at scales smaller than this, as we approach the Kolmogorov dimensions,
the turbulence would be far more isotropic. However, this cannot be directly verified
here owing to the limitation on spatial resolution of our PIV system. The velocity
spectra show a tendency toward convergence at high wavenumbers. This trend is also
seen in the strain rate spectrum, which shows that, under the influence of an imposed
strain field, the highest wavenumbers take the least time to return to an isotropic
configuration.

The R-T flow may be viewed as a mixing process for miscible/immiscible fluids
of different densities. From an energy budget analysis, it was shown that there is
considerable kinetic energy dissipation (∼ 50% of the potential energy loss), which
indicates the presence of highly three-dimensional structures necessary for mixing
to occur. The molecular mix fraction, a local mix parameter, was determined to be
∼ 0.75 in the self-similar region.

We close by suggesting that the spectral and statistical data presented here may
be used to validate direct numerical simulations and turbulence models such as the
Reynolds stress models, spectral transport model and two-fluid models of R-T mixing.

This material is based upon work that was supported by the US Department
of Energy under contract numbers DE-FG03-99DP00276/A000 and DE-FG03-
02NA00060. The authors would like to thank Wayne Kraft for his help in performing
the laser induced fluorescence experiments.
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